MonetDB/X100: Hyper-Pipelining Query Execution

نویسندگان

  • Peter A. Boncz
  • Marcin Zukowski
  • Niels Nes
چکیده

Database systems tend to achieve only low IPC (instructions-per-cycle) efficiency on modern CPUs in compute-intensive application areas like decision support, OLAP and multimedia retrieval. This paper starts with an in-depth investigation to the reason why this happens, focusing on the TPC-H benchmark. Our analysis of various relational systems and MonetDB leads us to a new set of guidelines for designing a query processor. The second part of the paper describes the architecture of our new X100 query engine for the MonetDB system that follows these guidelines. On the surface, it resembles a classical Volcano-style engine, but the crucial difference to base all execution on the concept of vector processing makes it highly CPU efficient. We evaluate the power of MonetDB/X100 on the 100GB version of TPC-H, showing its raw execution power to be between one and two orders of magnitude higher than previous technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MonetDB/X100 - A DBMS In The CPU Cache

X100 is a new execution engine for the MonetDB system, that improves execution speed and overcomes its main memory limitation. It introduces the concept of in-cache vectorized processing that strikes a balance between the existing column-at-a-time MIL execution primitives of MonetDB and the tuple-at-a-time Volcano pipelining model, avoiding their drawbacks: intermediate result materialization a...

متن کامل

Efficient and Flexible Information Retrieval using MonetDB/X100

Today’s large-scale IR systems are not implemented using general-purpose database systems, as the latter tend to be significantly less efficient than custom-built IR engines. This paper demonstrates how recent developments in hardwareconscious database architecture may however satisfy IR needs. The advantage is flexibility of experimentation, as implementing a retrieval system on top of a DBMS ...

متن کامل

LevelHeaded: Making Worst-Case Optimal Joins Work in the Common Case

Pipelines combining SQL-style business intelligence (BI) queries and linear algebra (LA) are becoming increasingly common in industry. As a result, there is a growing need to unify these workloads in a single framework. Unfortunately, existing solutions either sacrifice the inherent benefits of exclusively using a relational database (e.g. logical and physical independence) or incur orders of m...

متن کامل

LevelHeaded: A Unified Engine for Business Intelligence and Linear Algebra Querying

Pipelines combining SQL-style business intelligence (BI) queries and linear algebra (LA) are becoming increasingly common in industry. As a result, there is a growing need to unify these workloads in a single framework. Unfortunately, existing solutions either sacrifice the inherent benefits of exclusively using a relational database (e.g. logical and physical independence) or incur orders of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005